夜夜躁很很躁日日躁麻豆,精品人妻无码,制服丝袜国产精品,成人免费看www网址入口

網(wǎng)易首頁 > 網(wǎng)易號 > 正文 申請入駐

“科學家不應相信任何東西”,專訪諾獎得主邁克爾·萊維特

0
分享至



“優(yōu)秀的科學家 99% 的時間都會犯錯?!边@句話出自 2013 年諾貝爾化學獎得主邁克爾·萊維特(Michael Levitt)教授。在這位投身科學界超過半個世紀,橫跨計算化學、生物學乃至計算健康和 AI 領(lǐng)域的科學先驅(qū)看來,真正的科學精神內(nèi)核不在于追求絕對正確,而是勇于試錯。


圖 | 諾貝爾獎官網(wǎng)對萊維特教授的簡介(來源:諾貝爾獎官網(wǎng))

萊維特教授因“為復雜化學系統(tǒng)創(chuàng)立多尺度模型”而獲得諾獎,同時他也是一位擁有 60 年編程經(jīng)驗、如今依舊每天高強度使用所有主流 AI 模型的前沿技術(shù)擁護者。他與中國有著深厚的聯(lián)系,對中國科技生態(tài)的觀察亦十分敏銳。

在這篇深度對話中,萊維特教授以一種罕見的坦誠,將他畢生秉持的試錯哲學與當下最火熱的 AI 革命進行了碰撞。他直言,在 AI 時代,大語言模型的出現(xiàn)比 AlphaFold 更讓他震撼,但也坦承AI 目前仍不夠好——“時而聰明,時而愚蠢”。

本文的核心精神,便是在這位智者“我不知道”的謙遜與“允許犯錯”的智慧中展開。他探討了 AI 的局限性、科學的偶然性、技術(shù)背后的哲學思辨,以及為什么在一個人人追求效率和完美的時代,我們反而更需要賦予年輕人失敗的權(quán)利。

以下是我們與這位跨領(lǐng)域科學家的完整對話。為便于閱讀,內(nèi)容經(jīng)過必要整理,但最大程度保留了他的原始論述與思維脈絡(luò)。


(來源:https://www.nobelprize.org/prizes/chemistry/2013/le)

談與中國結(jié)緣:第二任妻子曾在北大教書,二人多次來華

DeepTech:我注意到您曾多次到訪中國,參與過很多活動,您這次中國之行的感受如何?

Michael Levitt:感受很棒。8 年前,與我結(jié)婚近 50 年的第一任妻子中風去世。半年后我偶然遇見了現(xiàn)在的伴侶 Shoshan,她在北京大學教了 5 年書,與中國有很深的聯(lián)系。認識她之前我曾來過中國一兩次,因為她的影響我來得更頻繁了。

之后我們多次一起過來,我也在這里建立了不少聯(lián)系。我非常喜歡在中國生活,雖然我認識的中文不多。我認為在中國真正關(guān)鍵的是會用手機,但我對計算機(之類的電子產(chǎn)品)很熟悉,所以適應得很快,生活完全沒障礙。

疫情前,我們每年會在中國待三四個月,疫情期間有一半時間也在這里。這次行程和以往差不多,我們已經(jīng)在中國待了將近六周。我在這里主要做咨詢工作,合作對象包括復旦大學和浙江大學,也會到處做演講。

我拿過諾貝爾獎,成為了所謂的“有名氣的科學家”,因此除了自己的研究工作,我覺得自己還有義務(wù)向年輕人展示科學的魅力。雖然我的背景是計算化學和計算生物,現(xiàn)在反而更多在做計算健康。

每次來中國都會再次感受到這里的不可預期。我常開玩笑說,在中國開會,議程通常在會后兩天才真正明確。最開始我會因為不知道接下來會發(fā)生什么而緊張,但現(xiàn)在我完全接受并享受這種不確定性,通常結(jié)果都不錯。中國人在臨場應變和最后時刻把事情做成方面確實很強。

我的本職工作仍在斯坦福,是全職科學家,在中國是訪問和咨詢的角色。我出生于南非,在英國劍橋大學工作過,也在以色列和美國工作過。現(xiàn)在我和中國的一些機構(gòu)保持聯(lián)系,這些經(jīng)歷塑造了我的跨國理解框架。

另外我想強調(diào)的是,我在 2022 年 11 月 ChatGPT 3.5 發(fā)布后就開始深入研究 AI,幾乎每天都在用所有主流模型,不局限于一個引擎。這樣持續(xù)、高強度使用 AI 的人并不多。而且我現(xiàn)在仍在寫代碼,已經(jīng)寫了 60 年代碼了,這讓我看待問題能夠擁有較為長期的技術(shù)視角。


(來源:https://life.fjnu.edu.cn/9e/ad/c9671a368301/page.ht)

DeepTech:您已經(jīng)接觸過中國的科技產(chǎn)業(yè)生態(tài)系統(tǒng),與西方國家相比,您如何看待中國在科學和 AI 領(lǐng)域的發(fā)展?

Michael Levitt:我一直都有一個習慣,那就是不輕易做對比。別人問我 A 和 B 哪個更好,我的回答永遠是:A 加 B 比 A 或 B 更好。我倡導包容,而不是對立。

在科研和技術(shù)上,中國算是比較新的力量?,F(xiàn)代意義上的中國科技發(fā)展真正起步、真正系統(tǒng)性的投入也就幾十年。過去一年,我看到中國對生物技術(shù)的關(guān)注度大幅提升,這在某種意義上是意外的,因為生物技術(shù)十分復雜。中國把重點放在人類健康上,這是新變化,我非常贊賞。這應該是人類最容易達成共識的一點:沒有什么比人類福祉更重要。

至于 AI 技術(shù),在 DeepSeek 出現(xiàn)之前,中國用戶要真正地接觸到高質(zhì)量大模型其實很不容易。我非常高興看到 DeepSeek 橫空出世,它是一個重要轉(zhuǎn)折。因為我自己可以接觸到所有大模型,所以我深知能否使用 AI 工具對科研和創(chuàng)新意味著什么。DeepSeek 的出現(xiàn)讓中國用戶能真正接觸并利用先進 AI,而且現(xiàn)在已經(jīng)被廣泛使用,這是非常好的事。我也很高興看到中國進入這個賽道,與硅谷競爭。

在科學方面中國仍在學習。但從各種引用指數(shù)和出版趨勢來看,中國的科學產(chǎn)出正在快速上升,這是一件好事。

我常強調(diào)一點,真正優(yōu)秀的科學往往由年輕人完成,但獲得認可卻要等到很多年之后。因此優(yōu)秀科學的“被看見”與“被認可”之間總存在長長的滯后。我是 2013 年獲得的諾貝爾獎,而對應的研究是在 1960 年代末到 70 年代初完成的,中間隔了 45 年。

談自己得諾獎和最新諾獎得主

DeepTech:2013 年諾貝爾化學獎表彰了您和其他兩位科學家“為復雜化學系統(tǒng)創(chuàng)立了多尺度模型”,這項工作在過去 10 多年有什么新進展嗎?

Michael Levitt:我想先把這項工作的重點講清楚。1960 年代末,我很幸運參與了最早的一批蛋白質(zhì)和 DNA 的計算研究。這些都是生命分子的基礎(chǔ),它們由一連串原子構(gòu)成,但本質(zhì)上可以看作由許多“小分子模塊”組成。那時我研究的是小分子之間的相互作用力,后來意識到自己寫的小分子計算程序,只要稍作修改就能直接用于大分子。

我應該是第一個把蛋白質(zhì)“放進電腦里”并從能量學角度去研究它的人。任何系統(tǒng)要研究運動、變化,都需要一個能量函數(shù),也就是在任意原子排列下系統(tǒng)的能量是多少。當時我們建立了最早的能量函數(shù)體系,這套方法后來引出了許多重要突破。

生命之所以迷人,就在于它依賴這些長鏈分子發(fā)揮功能:一種是像文字一樣儲存信息的 DNA;另一種是蛋白質(zhì),能折疊成極其精確的三維結(jié)構(gòu)。人體大概有 25,000 種不同的折疊形狀。這些蛋白質(zhì)以不同方式組合,形成機器、結(jié)構(gòu),像樂高積木一樣構(gòu)成人體,只是每個“樂高塊”都是由一根分子鏈折疊出來的。尺度小于 1 納米,精確度遠高于任何芯片。

60 年來,結(jié)構(gòu)生物學不斷累積數(shù)據(jù)。我剛做蛋白質(zhì)研究那會,全世界只有兩個結(jié)構(gòu)。今天已超過幾十萬,是靠無數(shù)科學家的艱苦工作取得的成果。相關(guān)成果帶來了許多諾貝爾獎。

如今的 DeepMind AlphaFold,是把幾十年所有結(jié)構(gòu)知識集中起來的一次整合。2024 年獲得諾獎的德米斯·哈薩比斯(Demis Hassabis)和約翰·江珀(John Jumper)帶領(lǐng)團隊把所有結(jié)構(gòu)數(shù)據(jù)庫、各類方法論和前人提出的能量函數(shù)思路,全部匯聚進一個 AI 系統(tǒng)里。這個系統(tǒng)可以基于序列家族給出可信的結(jié)構(gòu)預測。它其實是我在過去推進的那條研究路線的某種終點,能走到這一步令人驚嘆,也常被視為 AI 在科學領(lǐng)域的第一次真正意義上的重大應用。

AlphaFold 并不是憑空創(chuàng)新,而是在一個成熟框架上,用 AI 讓規(guī)模、方法和數(shù)據(jù)量都擴大了幾個量級,同時在網(wǎng)絡(luò)結(jié)構(gòu)、注意力機制、Transformer 的設(shè)計上有關(guān)鍵突破。這些都是在大模型出現(xiàn)之前實現(xiàn)的真正開創(chuàng)性工作。

從計算能力的角度看,我自己做過一些比較?,F(xiàn)在一部普通智能手機的算力,其實相當于 1997 年全球最強的超級計算機。而我開始做研究的時間比那還要早二十年,那時候的計算機算力大概又比 1997 年弱上很多倍。

這種巨量算力帶來的變化直接推動了 AI 的質(zhì)變。AI 讀完一千本書仍然很笨,但讀到一百萬本它就會變聰明。我們在科學中不斷遇到這種閾值,當數(shù)據(jù)量積累到足夠大時,不只是性能變好,而是直接從“做不到”跳躍到“能做到”。這是理解 AI 與現(xiàn)代科學的關(guān)鍵點。


(來源:https://digitalpaper.stdaily.com/http_www.kjrb.com/)

DeepTech:您對 2025 年諾貝爾化學獎有什么看法?

Michael Levitt:諾貝爾獎總能夠吸引所有人的注意,也同樣會吸引其他諾貝爾獎得主的關(guān)注。今年的化學獎非常令人印象深刻。我其實兩年前在上海見過奧馬爾·M·亞吉(Omar M. Yaghi)。雖然我不是化學家,但他給我留下了深刻的印象,尤其是他在研究中對 AI 的使用。因此聽到他獲獎,我真的很高興。

化學家們在設(shè)計新材料方面越來越強,他們正在做的事情讓我覺得非常有趣。他們不再從原子層面出發(fā),而是從“組件”的角度來思考——我們已經(jīng)能造出 A、B、C、D 這些基礎(chǔ)組件,然后通過聰明的組合方式把它們搭建起來。這些組件能夠以不同方式連接,從而產(chǎn)生完全新的結(jié)構(gòu)。

我認為金屬有機框架(MOF,Metal-Organic Framework)的關(guān)鍵,在于把金屬和有機分子結(jié)合起來。有機分子會把金屬原子彼此“撐開”。最常用的有機結(jié)構(gòu)往往是六元環(huán),比如苯環(huán)由六個碳原子構(gòu)成的平面環(huán)狀結(jié)構(gòu)。這個環(huán)可以在兩端與金屬結(jié)合,因為它是一個薄而平的結(jié)構(gòu),就像放入一片薄板,把金屬原子推得更遠,從而形成孔洞。

正是這些孔洞,使得這種材料擁有極其巨大的比表面積,因為材料內(nèi)部充滿微孔,小分子可以進入其中。這類材料因此具有重要的性質(zhì),就像海綿或泡沫因為內(nèi)部結(jié)構(gòu)而具備獨特的宏觀性能一樣。

在化學領(lǐng)域,我們將看到 AI 帶來的巨大進展?;瘜W本質(zhì)上是組合科學,原子的組合、分子的組合、片段的組合。組合空間增長得非??臁H绻阌?20 個組件,任意取 3 個排列組合,就產(chǎn)生超過 6,000 種可能的組合。取 5 個,就會超過 100 萬種。

AI 能夠探索這些龐大的空間。而且如今人們已經(jīng)在建立自動化實驗室,由機器人來執(zhí)行化學實驗。機器人一天能完成的實驗數(shù)量是人的一千倍,它們特別擅長系統(tǒng)化地進行混合與試驗。我相信在這個方向,我們會看到令人難以置信的突破。

談 AI:AI 知道答案,你要做的是找到正確的問題

DeepTech:所以您看到的科技進步更多的是飛躍式的、變革式的,而非一點點漸進的?

Michael Levitt:對我來說,AlphaFold 當然令人印象深刻。而大語言模型哪怕只是 ChatGPT 3.5 的語言能力,都完全超出了我的預期。它真正震撼了我,我完全無法相信,一臺機器突然能夠在語言上幾乎通過圖靈測試,而且之后只會變得越來越強。

所有這些進展完全是意料之外的,它們的意義在于:一個小小的芯片現(xiàn)在可以聽懂人。它們還不能真正“說話”,但后續(xù)的影響還沒完全顯現(xiàn)。我相信有一天,我們可以跟任何設(shè)備對話,都能得到回應。

整個發(fā)展完全出乎意料,就像 DeepSeek 在中國的出現(xiàn)一樣。科學的世界里,充滿這種意想不到的躍遷。

DeepTech:您覺得 AI 會遇到哪些瓶頸或局限性,甚至發(fā)展到無法繼續(xù)前進的地步?

Michael Levitt:我不知道?,F(xiàn)在的情況是,AI 有時非常聰明,有時又愚蠢到難以理解,而且你常常無法提前判斷。我一直用它寫代碼。有時候,它一次就能寫出一段很復雜的代碼,而且能正常運行,但有時候它會被一個很低級的 bug 卡住,怎么都找不到問題。所以現(xiàn)在的情況是,它的表現(xiàn)不夠穩(wěn)定。

另外,人類在做事情時,總是在試錯。AI 也需要具備這種自己嘗試的能力。但現(xiàn)在我經(jīng)常感覺是我在替 AI 工作,而不是 AI 在替我工作。AI 應該變得能夠自己說:“我先試方案一,我會測試它;兩小時后我告訴你成不成。不成功的話我再繼續(xù)嘗試?!蔽艺J為未來我們會先在這一點上看到突破。

AI 寫代碼確實在進步,但我沒法完全依賴一個模型,Claude、Gemini、ChatGPT 和 DeepSeek 我都在用,整個過程就像在和團隊合作。所以我們需要的是,AI 引擎能自動完成這種多方討論,你只需要說一句“請你們討論,最后給我一個討論后的最終答案”。

還有一個我在所有事情上都堅持的原則:科學家不相信任何東西。這聽起來可能有些奇怪,但科學家的基本假設(shè)是“一切都是錯的”。因為實驗結(jié)果常常會誤導你,常常是不準確的。所以我們認為所有東西都是錯的,直到有了確鑿的確認。

我覺得這是一種非常有益的態(tài)度,適用于所有事情。

至于未來可能遇到的瓶頸,未來總是充滿未知。很多人和我聊起 AGI,但對我來說 AGI 仍然是一件非常模糊、沒有定論的事情。

當然,如今的 AI 有時確實像我在斯坦福最優(yōu)秀的研究生一樣聰明,但有時它又會特別愚蠢。不過,我的學生也會犯蠢,我自己更是常常犯錯??茖W家出錯是很正常的,甚至某種意義上,好的科學家就應該經(jīng)常出錯。如果你從不出錯,說明你沒有在挑戰(zhàn)真正困難的問題。而只有在處理那些足夠難的問題時,你才會從錯誤中學習。我相信未來的 AI 也應該具備這種“從錯誤中成長”的能力。

展望未來,我最期待的是 AI 真正進入現(xiàn)實世界。有一天,我們會看到由 AI 控制的機器人替我們完成實際任務(wù)?,F(xiàn)在的 AI 世界主要還是互聯(lián)網(wǎng),它對真實世界的理解只來自網(wǎng)上的信息,但這種狀況終將發(fā)生改變。至于會怎樣發(fā)展,我們還得繼續(xù)觀察。

DeepTech:你相信我們總有一天會實現(xiàn)這一點嗎?

Michael Levitt:我也不確定。我常對別人說:無論 AI 多聰明,人類加上 AI 總是更聰明的。真正的力量來自多樣性。這一點在生物學中體現(xiàn)得極其明顯。

我認為 AI 也是同樣的道理,我們需要多樣性。我相信 AI 最終也會認識到這一點:有些事情是人類特別擅長的,而 AI 不一定做得好;反過來亦然。所以對我來說,共生協(xié)作至關(guān)重要。

我對 AI 的看法有點像我們與智能手機的關(guān)系。相比于 1997 年世界上最強大的計算機,現(xiàn)在的手機就有那樣的能力,而且?guī)缀跞巳硕寄軗碛?,這是非常驚人的。一個不用智能手機的人遠不如一個使用智能手機的人聰明,而一個擁有更聰明手機的人會變得更聰明。

所以我始終認為,未來依然是關(guān)于“我們”的。我們都會變得更聰明,雖然我們的基因沒有進化,我們的先天智商也沒有變高,可是我們的“文化智力”(cultural intelligence)、我們的“群體智力”(community intelligence),也就是我所說的 CI,卻讓我們變得異常聰明。

從最早的語言、傾聽長輩的經(jīng)驗、記住故事,到文字、互聯(lián)網(wǎng)、智能手機,這些東西不斷擴展著我們的認知能力?,F(xiàn)在,世界上 80% 的人能夠接觸到幾乎所有的書籍,這是過去完全無法想象的事情。

但我們適應了這種變化,并且在其中繁榮發(fā)展。無論是兒童死亡率、極端貧困人口比例、營養(yǎng)狀況還是整體生活質(zhì)量,世界都比以往任何時候都好。而與此同時,我們也在變得更聰明。

因此,我認為我們可以借此對未來做一些推測,但同時必須承認,未來本質(zhì)上是不可預知的。很多人擔心 AI 會帶來生存威脅,但我更擔心那些我們已經(jīng)知道、真實存在的生存威脅,比如火山噴發(fā)、核武器、大型隕石撞擊地球等等。

這些才是真正的生存威脅。至于 AI,我不知道。我覺得科學中一個非常重要的詞就是“我不知道”,因為有太多事情是我們不知道的,保持這種謙遜非常重要。

DeepTech:那么您認為 AI 將在未來 5-10 年內(nèi)對生物和化學的發(fā)展產(chǎn)生什么影響?

Michael Levitt:我并不能完全確定未來會怎樣,但我相信這場影響會非常深遠?;叵胛业囊簧?,我們經(jīng)歷過好幾次真正的技術(shù)革命。最早是計算機革命,然后是個人電腦的普及,后來出現(xiàn)了互聯(lián)網(wǎng)革命,而后又是智能手機革命。現(xiàn)在,我認為 AI 又是一場新的革命,只是要判斷它最終會扮演什么角色依然很難。然而某種意義上,AI 的潛力甚至可能超過之前所有的技術(shù)變革,因為它讓一個小小的芯片變得“足夠聰明”,能夠和你進行真正的交流。

舉個例子,我看到你的采訪提綱里的有關(guān)有機金屬化合物的問題,我就去問了 AI,只用了五分鐘我就得到了所有想知道的內(nèi)容。不是它把答案塞給我,而是我基于它提供的信息不斷追問,再結(jié)合自己的理解,把答案引向我想要的方向。這樣的交互方式已經(jīng)完全改變了獲取知識的方式。

我認為 AI 的影響絕不僅限于結(jié)構(gòu)生物學或化學建模,它會深刻改變教育、醫(yī)療、外交、政府運作,以及心理學、精神醫(yī)學等領(lǐng)域。AI 最有趣的地方之一,是它讓這些專業(yè)意見以一種近乎免費的方式變得觸手可及,過去你可能得花很多錢請專家才能得到同樣的建議。

比如說,你拿到一份法律文件,想知道有沒有問題。AI 當然不會 100% 正確,但它確實能幫你指出潛在風險。如果你不滿意 DeepSeek 的回答,你可以換成 Kimi 再問一遍,如果還不滿意,那就去問 Gemini。這種多重視角的即時獲得,在過去是不可想象的。

現(xiàn)在,人們可以用一種驚人的方式學習任何領(lǐng)域的知識。正因如此,我認為 AI 對各個領(lǐng)域都會產(chǎn)生影響。它之所以具有變革性,是因為它的適用范圍極其廣泛,幾乎什么問題都能回答。

我曾在我的一頁幻燈片上寫著:“AI 知道答案,你要做的是找到正確的問題?!毕乱恍惺牵骸氨3职藲q孩童的好奇,和八十歲老人的智慧?!卑藲q的孩子總在問問題,我們也要變得像他們一樣。

DeepTech:AI 的應用總是會伴隨著黑盒決策和可解釋性的顧慮,您如何看待這種顧慮?

Michael Levitt:人們常討論可解釋性,但可解釋性本身也可能是一種幻覺。我經(jīng)常舉一個例子:液態(tài)水。水是最簡單的系統(tǒng)之一,我們都知道水分子是 H?O,一個氧原子,帶著兩個氫原子,像一個 V 字形。

可當你把大量這樣的水分子放在一起時,它們竟然表現(xiàn)出非常復雜的性質(zhì),比如冰會浮在水面上,水的熱性質(zhì)也非常奇特。和其他液體相比,水其實是很復雜的。

人們試圖解釋這些性質(zhì)已經(jīng)很久了,也提出過許多理論。問題是,這些工作并沒有真正“解釋”水。它只是告訴我們,通過數(shù)學和模擬,我們可以得到這些性質(zhì),但為什么會這樣,我們依然說不清。

幾周前,我問 ChatGPT 能不能解釋一下為什么水會有一些特性?最后它給出的答案仍然是那套理由:V 字形、氫鍵網(wǎng)絡(luò)、張力。都是一些很模糊的解釋。

有些事物就是復雜的,而真正復雜的現(xiàn)象往往很難解釋。

我非常喜歡《三體》這本書,里面有很多啟發(fā)性的內(nèi)容。在《三體》里,描述了三體運動的物理本質(zhì),而三體問題的理論幾乎都是由龐加萊在 19 世紀奠定的。它告訴我們,即使物理定律是精確的,系統(tǒng)也會出現(xiàn)不確定性。我們常把“不確定性”歸因于量子力學,但其實在量子力學出現(xiàn)之前,僅僅因為數(shù)學結(jié)構(gòu)本身的性質(zhì),三體系統(tǒng)就已經(jīng)出現(xiàn)了這種不確定性。

在某種意義上,我們現(xiàn)在正處在一種需要“思考三體式問題”的時代。眼下很多事情發(fā)展得非常快,世界看起來比過去更混亂,但問題是:我們究竟應該如何應對混亂?也許對付混亂的方式本身就需要某種“混亂”。

如果你期待用完全有序、線性的方式處理混亂,那往往是行不通的。我們習慣的很多治理與決策框架,前提都是事物是“可預測的”。可在真正的混亂面前,也許制造一點不可預測性反而是策略之一。

我前陣子去上海參加一個會議,由世界頂尖科學家協(xié)會(World Laureate Association)組織的。會上有人提出,今天的軟件已經(jīng)復雜到連現(xiàn)有的代碼里都藏著大量無法預見的漏洞。演講者是牛津大學的一位年輕學者,阿米爾·戈哈爾沙迪(Amir Goharshady)。他展示了當下有多少代碼本質(zhì)上是“不可解釋”的,不僅人類寫的代碼如此,由 AI 生成的代碼在解釋性上也同樣成問題。

而這些軟件錯誤造成的損失已經(jīng)達到數(shù)萬億美元的規(guī)模。這是一個非常驚人的數(shù)字,大概和材料失效造成的損失相當。軟件失效已經(jīng)是一個嚴重的問題,所以未來我們必須認真去思考可解釋性,也必須思考責任歸屬。

DeepTech:對 AI 的監(jiān)管和規(guī)范,您有什么想法?

Michael Levitt:最近我一直在想一個場景:假設(shè)未來有越來越多的智能機器人在替我們做事,那么機器人要不要交稅?如果機器人能創(chuàng)造價值、能賺錢,那它當然也應該納稅。那么問題來了,它們?nèi)绾伪蛔R別?

我覺得未來我們必須給一切東西建立身份標識。軟件需要有自己的 ID,公司需要有 ID,每一張照片也需要有 ID?,F(xiàn)在所有東西都在被復制,我們希望知道原始版本是什么、是誰拍的、是哪個系統(tǒng)生成的。所以我相信,我們最終會需要一種“全鏈路 ID”體系,能標注每一個內(nèi)容、每一個模型、每一段軟件,甚至生成它們的硬件。

有人認為這樣的 ID 是個壞主意,因為它會讓所有東西都變得可追蹤,失去隱私。我覺得確實有道理,所以我們必須在隱私與身份標識之間找到平衡。

這其實不是一個技術(shù)問題,而是一個哲學問題。我認為哲學今后會變得非常重要。各種悖論、各種哲學概念都會重新變得關(guān)鍵。我們正學著用從未有過的方式去理解世界、處理問題,這一點前所未有。

我覺得各國政府必須認真思考,在全球化企業(yè)的時代,我們該如何應對。很多問題不僅僅是科學問題,而是跨越法律、經(jīng)濟、社會的復雜議題。

舉個例子,中國人坐火車時要刷身份證或護照,你的行蹤都能查到。對于沒有習慣使用身份證的西方人來說,這可能很難理解。但另一方面,正因為有嚴格的身份體系,中國的犯罪率非常低。生活在幾乎沒有犯罪的環(huán)境中,會讓人覺得很安全。

這里涉及到隱私和安全之間的平衡,自由和責任之間的平衡。這些問題非常深奧,不可能用一個原則就解決。我覺得一些在西方非常重要的制度比如民主依然非常關(guān)鍵,但民主本身并不足夠,還需要配合其他機制才能真正發(fā)揮作用。

在現(xiàn)實中,有些人可以通過向立法機構(gòu)捐款獲得遠比他人更多的影響力。這還是民主嗎?形式上是,但它真的總是最公平的嗎?我認為并非如此。我們必須認真思考這些問題,因為我們正在構(gòu)建一個新世界。

談做科研:年長的科學家必須主動把年輕人推到前面

DeepTech:您剛才提到了科學家總是會犯錯,您在以前的采訪中也說過:“優(yōu)秀的科學家 90% 的時間都會犯錯,而真正優(yōu)秀的科學家 99% 的時間都會犯錯。”我們應該如何理解這句話?它對您的工作有何影響?

Michael Levitt:犯錯是一個非常有意思的話題。我仍記得自己剛獲得諾貝爾獎的那段時間。我經(jīng)歷了許多事,不斷的采訪、媒體邀約、各種活動,生活就此改變。我意識到一件事,我已經(jīng)不是獲獎前的自己了,因為我成了一個象征。

諾貝爾獎有一種儀式感,它會讓你意識到自己與眾不同了。頒獎典禮的整個流程都是刻意安排的,因為從那一刻起,你不再只是你自己,你成為了科學的“公眾象征”。你的時間不再完全屬于自己,它屬于與公眾溝通、屬于科普、屬于責任。

我年輕的時候非常幸運,很早就接觸到了很多著名科學家。我的叔叔和嬸嬸住在倫敦,本身就是很有名的科學家。在 25 歲之前,我就已經(jīng)遇見了大量非常頂尖的科學家。

那時的我突然意識到,讓年輕人見到著名科學家是非常重要的,并不是因為他們多有名氣,而是因為你會意識到,他們也是真實的人。就像有人會想見搖滾明星一樣,但見到科學家會讓你意識到他們也是普通人,只是做出了不普通的工作。

也因為這樣,我見到了很多諾貝爾獎得主。幾乎所有人都同意,他們最重要的突破,往往來自長期的失敗。他們會告訴你,某個實驗他們試了兩年、三年、無數(shù)次,一直失敗,直到有一天突然抓住了那個缺失的關(guān)鍵點。

在某種意義上,科學探索就像是螞蟻尋找食物。螞蟻會不斷亂走,嘗試各種方向,純粹靠隨機漫步去尋找。一旦找到食物,它就會留下信息素,讓其他螞蟻能夠跟著過去??茖W就是這樣,本質(zhì)上是機緣、是試錯、是堅持。

你永遠不知道下一次重大突破會來自哪里,但你必須堅持下去。而當你犯錯時,你要繼續(xù)嘗試。這也是為什么我說,一個真正的優(yōu)秀科學家 99% 的時間都是錯的。如果你真的在做困難的事,你就會經(jīng)常犯錯。

如果有人對我說:“你可以做任何你想做的研究,但你絕對不能失敗。只要你失敗,就會失去所有經(jīng)費?!蹦俏乙欢〞プ鲆患浅0踩?、非常簡單的事情。我不會冒任何風險??墒强茖W家恰恰需要有犯錯的空間,才能真正從事有意義的探索。

我也跟中國學生說過,你們一路走來一直被教導要正確,要考高分,要在高考中不能失敗,要做你擅長的事情,總之就是盡量不犯錯。但現(xiàn)實生活恰好相反,你要去做你不擅長的事情,而不是永遠停留在舒適區(qū)。

最重要的是,你必須學會如何去犯錯。我甚至去問了 AI:人要怎么學會犯錯?結(jié)果我發(fā)現(xiàn),工程學里其實已經(jīng)有不少這樣的課程。班上一部分學生會設(shè)計一個帶有隱藏缺陷的系統(tǒng),另一部分學生則負責找出那個缺陷。你能不能“學習”去犯錯?我認為這是人生中必須掌握的一件事,但我們現(xiàn)在做得還遠遠不夠。

其實,能進入斯坦福、劍橋、牛津、哈佛、清華、北大這些頂尖大學的學生,大多數(shù)人可能從來沒有真正“錯過”。他們寫出完美的文章,做出完美的作業(yè),按部就班地成功。但要想在未來真正做出非凡的事情,他們需要學習如何面對錯誤。你必須學會接受失敗,你不可能把“犯錯”做得很完美,關(guān)鍵是接受它、擁抱它。

我非常相信,年輕人是推動科學前進的真正力量。可惜的是,今天的科學體系變得越來越頭重腳輕,由大量資深科學家主導。年長的科學家必須主動把年輕人推到前面。我們這些資深科學家有話語權(quán),但我們必須意識到新的突破往往來自那些“不知道自己不知道什么”的年輕人。

過去三十年真正改變我們生活的人是誰?你會發(fā)現(xiàn),幾乎所有人都是年輕人,而且很多人根本沒有完成學業(yè)。他們年輕、有強烈的創(chuàng)造力,根本等不及“完成全部學業(yè)”就要改變世界。

這給科學界一個非常明確的啟示:年輕人很強大。我們應當告訴年輕人,去研究真正困難的問題。因為重大突破來自長時間的失敗,而不是一次正確。這件事在科學界做得還遠遠不夠。

DeepTech:您還有什么想對年輕科學家說的寄語嗎?

Michael Levitt:第一,你得相信自己。因為如果你不相信自己,就不會有人真正相信你。第二,做你真正熱愛的事情,不要去做你以為重要的事情。你熱愛什么,你最終就會堅持什么。第三,要準備好犯錯。第四,也是最后一點,看似簡單但非常關(guān)鍵:做一個善良的人。樂于給予,愿意幫助別人??茖W需要互相扶持,需要彼此成就。

我覺得這些品質(zhì)都非常重要??茖W在過去 30 年與整個世界深度綁定,比以前任何時候都更深。如今科學家也能獲得許多財富。過去是“富人一類、科學家一類”,現(xiàn)在這兩個身份能融合在一起。

這意味著科學家肩上的責任也變成了雙倍的??茖W家過去住在象牙塔里,現(xiàn)在象牙塔外面還鍍了一層金。這不是一件好事,我們必須主動走出那座塔,讓自己更平易近人,更能理解那些沒有我們這么幸運的人。

身為科學家,我們必須意識到,每個人都有自己的價值,每個人值得被尊重,沒有任何人是無用的。這一點特別重要。

最后我還有一些思考:我們看待事情的時候,不能用非黑即白的眼光。很多事情是復雜的、混亂的、沒有絕對的對錯的。有時候看起來正確的路,未必真的是正確的。

舉一個來自《三體》的例子:(羅輯的)那個荒唐到讓人難以置信的面壁者計劃,看起來很不靠譜,反而成了最后的答案。

我認為美國今天的撕裂、嚴重的兩極分化,部分原因是學術(shù)界和當權(quán)者并沒有足夠意識到他們自己有多幸運,他們以為這些是自己“應得的”??墒聦嵣希瑳]有什么是應得的。我常說,我只是運氣很好,而真正驅(qū)動成功的,往往就是運氣。如果你成功了,就必須明白自己有多幸運,這樣你才能理解有些人有多么不幸。

運營/排版:何晨龍

特別聲明:以上內(nèi)容(如有圖片或視頻亦包括在內(nèi))為自媒體平臺“網(wǎng)易號”用戶上傳并發(fā)布,本平臺僅提供信息存儲服務(wù)。

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

相關(guān)推薦
熱點推薦
超264萬方,武漢將迎來“史詩級”大開發(fā)!

超264萬方,武漢將迎來“史詩級”大開發(fā)!

越喬
2025-12-18 22:43:53
49歲趙薇廣東飯局近照瘋傳!瘦脫相顯兇相,當年小燕子徹底涼透了

49歲趙薇廣東飯局近照瘋傳!瘦脫相顯兇相,當年小燕子徹底涼透了

阿纂看事
2025-12-12 09:18:29
日本首相:日方愿與中方開展包括領(lǐng)導層在內(nèi)的各層面對話

日本首相:日方愿與中方開展包括領(lǐng)導層在內(nèi)的各層面對話

俄羅斯衛(wèi)星通訊社
2025-12-18 15:27:23
板正的球隊

板正的球隊

靜易墨
2025-12-18 21:24:07
意外!上港球迷曾質(zhì)疑他不如蒯紀聞,如今德轉(zhuǎn)身價飆升到350萬

意外!上港球迷曾質(zhì)疑他不如蒯紀聞,如今德轉(zhuǎn)身價飆升到350萬

懂個球
2025-12-18 17:42:06
山西男籃送浙江三連敗,劉傳興16+8賈明儒21+4+5,吳前16分!

山西男籃送浙江三連敗,劉傳興16+8賈明儒21+4+5,吳前16分!

中國籃壇快訊
2025-12-18 21:43:08
深圳16歲“烤雞少年”火出圈,每天能賣兩三百只烤雞,靠努力實現(xiàn)逆襲人生

深圳16歲“烤雞少年”火出圈,每天能賣兩三百只烤雞,靠努力實現(xiàn)逆襲人生

瀟湘晨報
2025-12-17 22:00:17
薩拉赫連遭重創(chuàng)!落選埃及大名單+利物浦已經(jīng)尋到替代者

薩拉赫連遭重創(chuàng)!落選埃及大名單+利物浦已經(jīng)尋到替代者

夜白侃球
2025-12-18 20:37:17
不出意外,中國未來超一半人口將流入到這幾個城市,房價將反彈

不出意外,中國未來超一半人口將流入到這幾個城市,房價將反彈

山丘樓評
2025-12-17 21:02:21
普京拒付金正恩派兵報酬,因朝鮮軍隊戰(zhàn)績不佳,僅支付20%報酬

普京拒付金正恩派兵報酬,因朝鮮軍隊戰(zhàn)績不佳,僅支付20%報酬

環(huán)球熱點快評
2025-12-17 09:19:03
柬埔寨街頭為什么拆除中文招牌?

柬埔寨街頭為什么拆除中文招牌?

懷疑探索者
2025-12-17 20:34:23
曝李湘前夫因經(jīng)濟犯罪被抓!7天前才剛露過面,負債后開直播自救

曝李湘前夫因經(jīng)濟犯罪被抓!7天前才剛露過面,負債后開直播自救

萌神木木
2025-12-18 14:25:22
何穗產(chǎn)后首曬懟臉照,素顏露面狀態(tài)超好,一雙“筷子腿”超搶鏡

何穗產(chǎn)后首曬懟臉照,素顏露面狀態(tài)超好,一雙“筷子腿”超搶鏡

扒蝦侃娛
2025-12-18 22:40:36
徐正源兒子:父親經(jīng)歷艱難的決定,成都永遠是我們的第二故鄉(xiāng)

徐正源兒子:父親經(jīng)歷艱難的決定,成都永遠是我們的第二故鄉(xiāng)

懂球帝
2025-12-18 23:14:30
央視《老舅》被觀眾要求下架,理由:劇情太假,掛羊頭賣狗肉!

央視《老舅》被觀眾要求下架,理由:劇情太假,掛羊頭賣狗肉!

甜檸聊史
2025-12-17 09:23:55
泰軍再次炮擊柬埔寨園區(qū),電詐分子出逃,長長隊伍一眼望不到頭

泰軍再次炮擊柬埔寨園區(qū),電詐分子出逃,長長隊伍一眼望不到頭

環(huán)球熱點快評
2025-12-18 07:59:22
重磅宣布!你好,加內(nèi)特!森林狼等了整整9年

重磅宣布!你好,加內(nèi)特!森林狼等了整整9年

籃球?qū)崙?zhàn)寶典
2025-12-18 23:36:49
網(wǎng)友稱在閑魚買了清朝條約電子書,沒多久賣家賬號就被封禁

網(wǎng)友稱在閑魚買了清朝條約電子書,沒多久賣家賬號就被封禁

映射生活的身影
2025-12-18 18:22:37
月活不足豆包5%,Kimi跌下神壇

月活不足豆包5%,Kimi跌下神壇

司庫財經(jīng)
2025-12-17 23:01:19
史曉燕太敢說!稱許亞軍現(xiàn)任妻子面相不是善茬,高爾夫結(jié)緣有內(nèi)幕

史曉燕太敢說!稱許亞軍現(xiàn)任妻子面相不是善茬,高爾夫結(jié)緣有內(nèi)幕

古希臘掌管月桂的神
2025-12-18 16:33:45
2025-12-19 06:47:00
DeepTech深科技 incentive-icons
DeepTech深科技
麻省理工科技評論獨家合作
16011文章數(shù) 514409關(guān)注度
往期回顧 全部

科技要聞

2025新一代人工智能創(chuàng)業(yè)大賽總決賽收官

頭條要聞

特朗普命令2028年登月 在月球部署核反應堆

頭條要聞

特朗普命令2028年登月 在月球部署核反應堆

體育要聞

紐約尼克斯,板正的球隊

娛樂要聞

絲芭放大招了!實名舉報鞠婧祎經(jīng)濟犯罪

財經(jīng)要聞

尹艷林:呼吁加快2.5億新市民落戶進程

汽車要聞

在零下30℃的考場里 凡爾賽C5 X和508L拿到了"穩(wěn)"的證明

態(tài)度原創(chuàng)

本地
房產(chǎn)
旅游
教育
軍事航空

本地新聞

云游安徽|決戰(zhàn)烽火照古今,千秋一脈看宿州

房產(chǎn)要聞

搶藏瘋潮!封關(guān)時代,海口頂奢王炸壓軸,傳世資產(chǎn)即刻登場!

旅游要聞

北緯 36° 奇跡!北方最北茶園憑 1 片葉子,讓貧瘠嶺變富民園

教育要聞

北交大2025轉(zhuǎn)專業(yè)政策大調(diào)整!零門檻+兩次機會

軍事要聞

福建艦入列后首過臺海 臺方談為何"甲板上沒有艦載機"

無障礙瀏覽 進入關(guān)懷版 强奸乱伦视频中文字幕| 国产一区二区三区免费AV| 免费大片黄国产在线观看| www.影音AV| 2021久久超碰国产精品最新| 免费高清特级毛片A片| 国产高清毛片| 日本熟妇五十六十| 久久手机AV| 国产精品户外野外| 裸体欧美BBBB极品BBBB| 国产成人午夜福利院| 国产一区二区三区啪| 无码影院专区| 欧美激情综合色综合啪啪五月| 婷婷色香五月综合缴缴情香蕉| 免费黄色小电影网址| 精品毛卡卡1卡2卡3麻豆| 国产一区国产二区在线精品| 久久直播视频999| 无人区一码一码二码三码区别| 欧美黑人巨大| a√在线一区| 狠狠躁夜夜躁AV| 亚洲中文字幕在线观看| 亚洲无码vr| 青娱乐在线极品盛宴| 久久久亚洲欧洲日产国码AⅤ| 九九成人直播间| 色五月人人操| 亚洲精品无码不卡久久久久| 亚洲天堂日本妖精视频天堂日本妖精视频天| 好大好深视频| 大地资源中文在线观看官网第二页| 欧美白人做受XXXX视频 | 国产一v二v精品| 在线午夜精品自拍小视频| 亚洲AV无码精品一区二区三区| 中国少妇初尝黑人巨高清| 午夜福利午夜福利1000| 人妻不卡视频|